skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Norwine, Emily E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Metal–ligand cooperative binding modes were interrogated in a series of zinc bis(thiophenoxide) complexes. A weak B–S binding interaction is observed in solution between the weakly Lewis basic thiophenoxide ligands and an appended trialkylborane. The energy of this binding event is dependent upon the strength of the Lewis acid and its proximity to the zinc thiophenoxide. 
    more » « less
  2. A Cu( i ) fully fluorinated O-donor monodentate alkoxide complex, K[Cu(OC 4 F 9 ) 2 ], was previously shown to form a trinuclear copper–dioxygen species with a {Cu 3 (μ 3 -O) 2 } core, T OC4F9 , upon reactivity with O 2 at low temperature. Herein is reported a significantly expanded kinetic and mechanistic study of T OC4F9 formation using stopped-flow spectroscopy. The T OC4F9 complex performs catalytic oxidase conversion of hydroquinone (H 2 Q) to benzoquinone (Q). T OC4F9 also demonstrated hydroxylation of 2,4-di- tert -butylphenolate (DBP) to catecholate, making T OC4F9 the first trinuclear species to perform tyrosinase (both monooxygenase and oxidase) chemistry. Resonance Raman spectra were also obtained for T OC4F9 , to our knowledge, the first such spectra for any T species. The mechanism and substrate reactivity of T OC4F9 are compared to those of its bidentate counterpart, T pinF , formed from K[Cu(pin F )(PR 3 )]. The monodentate derivative has both faster initial formation and more diverse substrate reactivity. 
    more » « less